11 de jul. de 2010

Wilhelm Konrad Röentgen


Nasceu em 27 de março de 1845, em Lennep, Alemanha. Faleceu em 1923.
Em 8 de novembro de 1895, Roentgen estava realizando experimentos com descargas elétricas em gases rarefeitos, quando descobriu os raios X. Em três semanas Roentgen investigou quase tudo que sabemos hoje sobre esta radiação, excetuando apenas o fenômeno da difração, que só foi descoberto por volta de 1912.
Sua primeira radiografia foi realizada na mão esquerda de sua esposa Bertha Röentegen, com seu anel de casamento, a radiografia levou cerca de 30 minutos para ser feita, tempo depois sua esposa morreu de cancer.
Pela descoberta dos raios X, Roentgen ganhou o Prêmio Nobel de 1901..

Graças a esse alemão PHD em Fisica, temos hoje tantos avanços na área de Diagnóstico por Imagem.
Faz 20 anos que a profissão foi regulamentada.

História da Radiologia

No final do século XIX, mais precisamente no dia 8 de novembro de 1895 foram descobertos os Raios X pelo físico alemão Wilhelm Conrad Roetgen ao ver sua mão projetada numa tela enquanto trabalhava com radiações. Por ser muito perspicaz e inteligente imaginou que de um tubo em que ele trabalhava deveria estar sendo emitido um tipo especial de onda que tinha a capacidade de atravessar o corpo humano.

Como era uma radiação invisível, ele a chamou de Raios X. Sua descoberta valeu-lhe o prêmio Nobel de Física em 1901.
Na época - começo do século XX - ocorreu uma revolução no meio médico, trazendo um grande avanço no diagnóstico por imagem.

Desde esta época até os dias de hoje surgiram várias modificações nos aparelhos iniciais a fim de se reduzir a radiação ionizante usada nos pacientes, pois acima de uma certa quantidade é prejudicial à saúde. Assim foram surgindo tubos de Raios X, diafragmas para reduzir a quantidade de Raios X assim diminuindo a radiação secundária que, além de prejudicar o paciente, piorava a imagem final.

Em abril de 1896, fez-se a primeira radiografia de um projétil de arma de fogo no interior do crânio de um paciente, essa radiografia foi feita na Inglaterra pelo Dr. Nelson.
Em novembro de 1899, Oppenhein descreveu a destruição da sela túrcica por um tumor hipofisário.
Em março de 1911, Hensxhen radiografou o conduto auditivo interno alargado por um tumor do nervo acústico (VIII par.).
Em novembro de 1912, Lackett e Stenvard descobriram ar nos Ventrículos ocasionados por uma fratura do crânio.
Um neurocirrugião de Baltimore, Dandy, em 1918, desenvolveu a ventriculografia cerebral, substituindo o líquor por ar. Assim ele trouxe grande contribuição no diagnóstico dos tumores cerebrais.
Por volta de 1931, J. Licord desenvolveu a mielografia com a introdução de um produto radiopaco no espaço suboracnóideo lombar.
Em julho de 1927, Egaz Moniz desenvolveu a angiografia cerebral pela introdução de contraste na artéria carótida com punção cervical. Ao apresentar seu trabalho na Sociedade de Neurologia de Paris, ele disse: "Nós tinhamos conquistado um pouco do desconhecido, aspiração suprema dos homens que trabalham e lutam no domínio da investigação".

A evolução dos equipamentos trouxe novos métodos. Assim surgiu a Planigrafia linear, depois a Politomografia onde os tubos de Raios X realizavam movimentos complexos enquanto eram emitidos.
No Brasil, Manuel de Abreu desenvolveu a Abreugrafia, um método rápido de cadastramento de pacientes para se fazer radiografias do tórax, tendo sido reconhecida mundialmente.
Em 1952, desenvolveu-se a técnica da angiografia da artéria vertebral por punção da artéria femoral na coxa passando um cateter que ia até a região cervical, pela aorta.
Por volta de 1970 através de catéteres para angiografia, começou-se a ocluir os vasos tumorais surgindo assim a radiologia intervencionista e terapêutica. Assim, nos dias de hoje, usam-se catéteres que dilatam e desobstruem até coronárias, simplesmente passando-os pela artéria femoral do paciente, com anestesia local, evitando nesses casos cirurgias extracorpóreas para desobstrução de artérias (famosas pontes de safena).
Também na década de 1970, um engenheiro inglês, J. Hounsfield, desenvolveu a Tomografia Computadorizada, acoplando o Raio X a um computador. Ele ganhou o prêmio Nobel de Física e Medicina.

Até então as densidades conhecidas nos Raios X eram ossos, gorduras, líquidos e partes moles. Com esse método, devido a sua alta sensibilidade foi possível separar as partes moles assim visualizando sem agredir o paciente, o tecido cerebral demonstrando-se o liquor, a substância cinzenta e a substância branca. Até essa época, as imagens do nosso corpo eram obtidas pela passagem do feixe de Raios X pelo corpo, que sofria atenuação e precipitava os sais de prata numa película chamada filme radiográfico que era então processada. Com essa nova técnica, o feixe de Raios X atenuado pelo corpo sensibilizava de maneiras diferentes os detectores de radiação. Essas diferenças eram então analisadas pelo computador que fornecia uma imagem do corpo humano em fatias transversais em um monitor e depois passada para um filme radiográfico.

A tomografia computadorizada revolucionou o diagnóstico por imagem, pois sem agressão alguma ao paciente, obtemos imagens em secções transversais de todo o organismo. Hoje se pode diagnosticar em 10 minutos tumor "in situ" de até 1mm de diâmetro localizado na intimidade do cérebro como por exemplo um microneurinoma no interior do conduto auditivo interno e um micropinealoma na intimidade da glândula pineal.

O homem, não satisfeito ainda, descobriu e colocou em aplicação clínica a Ressonância Nuclear Magnética por volta de 1980. Ela obtém imagens do nosso corpo similares às da tomografia computadorizada, só que com várias vantagens adicionais. Não utiliza radiação ionizante, raramente necessita uso de contraste e são obtidas imagens nos três planos: sagital, coronal e transversal.

A ressonância resulta da interação dos núcleos dos átomos, os prótons de Hidrogênio de número ímpar, com um campo magnético intenso e ondas de radiofrequência. Sob a ação dessas duas energias, os prótons de hidrogênio ficam altamente energizados e emitem um um sinal que apresenta uma diferença entre os tecidos normais e os tecidos patológicos. Essa diferença de sinal é analisada por um computador que mostra uma imagem precisa em secções nos três planos.

5 comentários:

  1. Olá rapaziada do blg, estou começando o meu curso em radiologia, muito legal o blog de Maico Jones.
    Um abraço.

    ResponderExcluir
  2. faço o curso de radiologia e estou gostando muito.bjus

    ResponderExcluir
  3. Hey there! I could have sworn I've been to this website before but after reading through some of the post I realized it's new to me.
    Anyhow, I'm definitely glad I found it and I'll be book-marking and checking back often!


    Also visit my page dezavala

    ResponderExcluir
  4. Hi there colleagues, nice post and good urging commented at this place, I am actually enjoying by these.


    Feel free to surf to my web site; soundboards

    ResponderExcluir