OS FATORES FORMADORES DA TÉCNICA RADIOLÓGICA E O CÁLCULO DA TÉCNICA RADIOLÓGICA.
GENERALIDADES:
Para se obter uma boa imagem no filme radiográfico, além de um bom posicionamento do paciente ou estrutura a ser radiografada, devemos saber utilizar corretamente os “Fatores radiográficos ou elementos formadores da TECNICA” utilizada para determinado caso, de forma equilibrada e que esteja dentro dos padrões de segurança e tolerância do organismo. Tais elementos são : o kV (Quilovolt), a mA (mili amperagem), o t (tempo de exposição em seg.), a “D” (distância em cm) e a constante do aparelho (K). Existem também outros fatores, como por exemplo: o uso ou não de grades, o tipo de Écran (grão fino, médio ou grosso), o EFEITO ANÓDICO e as condições do químico usado para a revelação do filme.
Painel ou mesa de comando mostrando os fatores radiográ ficos, botões seletores de voltagem e bucky, de preparo e disparo, Leds indicadores e Agulhas com escala de leitura.
*O QUE SIGNIFICA :
A) A tensão (kV): Fator radiográfico que representa a qualidade dos raios-x, sendo também responsável pelo poder de penetração dos raios-x e pelos contrastes intermediários entre o PRETO e o BRANCO (tons de Cinza). OBS: Quanto mais kV empregado, maior será o poder de penetração, ou seja, nos exames de maior espessura a radiação secundária produzida é proporcional a quilovoltagem empregada.
OUTRAS CONSIDERAÇÕES SOBRE KV.
O KV está relacionado com a energia do feixe de raios-x;
Quanto maior o valor do KV aplicado, maior será a força de penetração dos fótons;
Em grande parte dos aparelhos de raios-x os valores de KV estão disponíveis em uma escala que varia entre 40 e 120KV;
O KV é o principal fator de controle da imagem.
Outra expressão usada para o cálculo do KV, descrita em algumas literaturas é:
ESP x 2 + CA=KV, onde:
ESP = espessura da área em cm;
CA = Constante do Aparelho;
KV = o que se quer saber.
Como calcular o kV? – Através da fórmula:
kV = 2 x e + K, onde:
kV é a quilovoltagem que se deseja, multiplica-se a “e” (espessura) por 2 e soma-se com a “K” (constante do aparelho).
EX: kV = ?
e = 20 cm, K = 30
kV = 2 x e + K
kV = 2 x 20 + 30
kV = 40 + 30
Resposta: kV = 70.
OBS: para encontrar a espessura da região a ser radiografada “e”, utilizamos um instrumento denominado “ESPESSÔMETRO”, que nada mais é que um tipo de régua ou escala graduada em “cm”. Caso não disponha deste instrumento, utilize uma fita ou régua para obter a medida.
B) A corrente mAs: Fator radiográfico que representa a quantidade de raios-x, sendo também responsável pelos contrastes fortes (PRETO e BRANCO). Essa quantidade depende do Tempo usado, pois o aumento de um pode ser compensado com a diminuição do outro, daí o termo mAs (mA x tempo). O mA depende do aquecimento fornecido ao CATÓDIO (-), pois quanto maior for o aquecimento, maior será a quantidade de elétrons flutuando sobre o catódio, ou seja, maior será a nuvem eletrônica que será projetada para a superfície do ANÓDIO, produzindo assim maior quantidade de raios-x.
A corrente não é calculada e sim calibrada na mesa de comando.
OUTRAS CONSIDERAÇÕES SOBRE mAs.
O mAs é o produto (multiplicação) da corrente do tubo (mA) pelo tempo de exposição (t) em segundos;
O mAs define a quantidade de fótons de raios-x aplicados em uma exposição radiográfica;
Quanto maior o mAs, maior a quantidade de fótons de raios-x no feixe e, consequentemente, maior o grau de enegrecimento (densidade) da imagem.
Como calcular o mAs ? – Através da fórmula: mAs = mA x t, onde:
mAs = é o que se deseja, o mA( miliampére) multiplica-se pelo t (tempo).
EX: mAs = ?
mAs = mA x t
mA = 300 mAs = 300 x 0,5
t = 0,5 s
Resposta : mAs = 150
Outra expressão matemática descritas em algumas literaturas:
mAs / s = mA
mAs / mA = s
O cálculo do mAs pode ser obtido através da expressão matemática:
KV x CMR = mAs, onde:
CMR = Constante Miliamperimétrica Regional.
A CMR é atribuída aos diferentes tecidos e órgãos do corpo humano.
TECIDOS / ÓRGÃOS: CMR
OSSOS = 1.0
PARTES MOLES = 0.8
PULMÕES = 0.03
C) t(s): Fator radiográfico que caracteriza o “Tempo de exposição em segundos”, está intimamente ligado com a mA, pois é o tempo de aquecimento do CATÓDIO (-), lembre-se ! quanto maior for o aquecimento, maior será a quantidade de elétrons produzidos (nuvem eletrônica), ou seja maior será a quantidade de raios-x que é empregada. O tempo (t) é a duração da emissão dos raios-x e deve ser curto nas radiografias de órgãos em movimento, com por exemplo: Coração, intestino (peristalse), pulmões etc.
D) K (CA): Fator radiográfico que caracteriza a constante do aparelho, ou seja, são padrões técnicos dos componentes eletrônicos, de acordo com sua potência (padrões do fabricante). Geralmente, utilizamos um K=30 (de 20~30*)
Como calcular a K ? – Através da fórmula usada para calcular o kV:
kV = 2 x e + K, por exemplo:
K = ?
kV = 80
e = 25 cm
kV = 2 x e + K
80 – 50 = K
80 = 2 . 25 + K
80 = 50 + K
Resposta: K = 30
OBS: Quando a grade usada for da proporção 8:1, a constante do aparelho é = a 30;
Se for de 12:1, a constante será = 40.
A grade antidifusora, criada pelo Dr. Gustav Bucky, consiste em um conjunto de finas lâminas de chumbo separadas por um material radiotransparente muito leve e possui a função de absorver radiação espalhada (secundária) originada a partir da interação do feixe de raios-x primário de radiação com a área de interesse / ou parte do corpo do paciente. Deve ser usada quando a quilovoltagem for superior a 70KV.
Existem grades fixas (Dr. Gustav Bucky) e móveis (Dr. Hollis E. Potter e Dr. Gustav Bucky – sistema POTTER-BUCKY).
E) D: fator radiográfico que caracteriza a distância do foco até o filme (DfoFi), ou seja, relaciona-se com a quantidade de raios-x que saindo do foco chega até o objeto.
Essa quantidade é inversamente proporcional ao quadrado da distância e é um fator que não está relacionado diretamente com a mesa de comando.
De acordo com a Lei de Kepler, ao dobrarmos a distância foco-filme (DfoFi), teremos que quadruplicar a intensidade da radiação, para que possamos obter uma radiografia de padrões semelhantes.
Lembre-se, a distância é medida em cm ou m, sendo mais comumente usada a distância de 100 cm ou 1 m.
F) Efeito Anódico: Fenômeno que explica a quantidade a mais de radiação no lado do CATÓDIO (-). Relaciona-se com o ângulo de inclinação do alvo ou pista de choque dos elétrons no ANÓDIO (+). Portanto, o CATÓDIO (-) sempre deve estar voltado para a região de maior densidade, por exemplo:
Em uma radiografia da coluna tóraco-lombar em AP, o CATÓDIO deve estar voltado para a região lombar, radiografia do joelho em AP, o CATÓDIO voltado para o lado da coxa e etc.
OUTRAS CONSIDERAÇÕES:
Efeito Anódico: O efeito anódico descreve um fenômeno em que a intensidade da radiação emitida pelo catodo do emissor de raios X é maior do que a do anodo.
Isso se deve ao fato de o ângulo da face do anodo sofrer grande atenuação ou absorção de raios X pelo terminal do anodo.
Estudos mostram que a diferença de intensidade do catodo para o anodo no feixe de raios X pode variar de 30% a 50%, dependendo do ângulo alvo.
Em geral, quanto menor o ponto focal, maior o efeito anódico.
Observação: Um ângulo anódico mais preciso (menor que 12°) também aumenta o efeito anódico, mas isso é determinado pelo fabricante, e não pelo técnico / tecnólogo / radiologista.